Gaming Performance 2017: AoTS Escalation

Ashes of the Singularity is a Real Time Strategy game developed by Oxide Games and Stardock Entertainment. The original AoTS was released back in March of 2016 while the standalone expansion pack, Escalation, was released in November of 2016 adding more structures, maps, and units. We use this specific benchmark as it relies on both a good GPU as well as on the CPU in order to get the most frames per second. This balance is able to better display any system differences in gaming as opposed to a more GPU heavy title where the CPU and system don't matter quite as much. We use the default "Crazy" in-game settings using the DX11 rendering path in both 1080p and 4K UHD resolutions. The benchmark is run four times and the results averaged then plugged into the graph. 

Ashes of the Singularity: Escalation - 1080p

Ashes of the Singularity: Escalation - 4K UHD

 

Our AOTS testing continues to be a tight-knit dataset with almost 2 frames per second separating things in the more CPU heavy 1080p and less than 1 frame per second in 4K.  The ROG Strix was in the middle of both sets of results.

CPU Performance: Short Form Overclocking with the i9-7900X
Comments Locked

27 Comments

View All Comments

  • MrPoletski - Monday, December 11, 2017 - link

    I can totally see ten of thousands of dollars being spent on this board and a corresponding PC of worthwhile power so the owner can play master of orion 2, nes emulators and minecraft. I know, I'm one of those nobs.
  • peevee - Monday, December 11, 2017 - link

    Somebody has to seriously grow up instead of wasting $400 for a gaming MB (or a few thou for a gaming computer).
  • ddrіver - Monday, December 11, 2017 - link

    "ten of thousands of dollars"? Sounds a bit excessive given that 1 (or 2, where possible) of the most expensive components available still doesn't really get you to $10K. Unless you're buying by sorting for the most expensive anything and taking as many as you can fit in a case.
    Next thing you're going to brag you pay a guy to comment for you.
  • DanNeely - Monday, December 11, 2017 - link

    " The smaller slots are an x1 and two x4 slots (the first runs at 1x) powered by the chipset for add-in cards. "

    This seems backwards since the first x4 is always free to put a card in while the second is blocked by the 2nd GPU.
  • Joe Shields - Monday, December 11, 2017 - link

    Hey Dan, I don't blame you for thinking this way. However, from the specifications it says this...:

    1. PCIEX4_1 max. at x1 mode

    Which is the same for all 44/28/16 lane CPUs.
  • DanNeely - Monday, December 11, 2017 - link

    ok. Just wanted to confirm it was a screwy design on Asus's part, not a transcription error.
  • SanX - Monday, December 11, 2017 - link

    Where the hell are dual CPU mobos? Intel and AMD don't like to sell more chips?
  • Dr. Swag - Monday, December 11, 2017 - link

    Intel has never sold non Xeon products that can be put in dual CPU mobos.
  • PeachNCream - Monday, December 11, 2017 - link

    Google says there were dual Pentium, Pentium Pro, Pentium II, Pentium III, and so forth motherboards around so Intel has sold non-Xeon products for dual socket/slot motherboards.
  • DanNeely - Monday, December 11, 2017 - link

    With the exception of the P3 all of those predated the Xeon branding. Dual socket P3 was presumably transitional in their rebranding.

    For modern chips, on the Intel side mainstream parts have neither the on die hardware, nor chip socket support for multi-socket setups because doing so would inflate the costs of the 99.9% of systems that are single socket.

    I'm less sure of the situation with AMD. I suspect that due to the level of die sharing they're doing between TR and Epyc that TR cpu dies themselves have the hardware needed to talk to a second CPU socket. However I'm skeptical that they've also paid extra for a larger/more complex socket on mainstream TR parts. It'd raise costs for the 99.9% of uni-socket systems and cut into sales of their more profitable Epyc line.

    More generally multi-core CPUs have been heavily eroding the market for multi-socket chips over the last 15 years. They require more complex boards, more complex CPUs, in many cases (ie any that need threads on different sockets to talk to each other) they also require additional programming work to perform at their maximum capacity (AMD has a NUMA hit for new multi die but single socket chips, however its worse for their dual socket ones). All of that means that almost any time you can get a single socket system with a suitable performance level it will be more cost effective than a similar dual (never mind quad or 8way) socket system. With dozens of cores available on Intel and AMD's current high end platforms small core count dual socket systems rarely make sense outside of cases where you need huge amounts of ram and don't really care about CPU performance.

Log in

Don't have an account? Sign up now